GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM

Course Title: AC CIRCUITS (Code: 3330901)

Diploma Programme in which this course is offered	Semester in which offered	
Electrical Engineering	Third Semester	

1. RATIONALE

Most of electrical power generation, transmission, distribution and utilization are in the form of alternating current. Therefore knowledge of behaviour of resistance, capacitance and inductance in AC systems is must for every electrical engineer. AC circuit course will help the students to Explain concepts of advanced courses and develop the skills that are needed by the industries.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Apply the principles of AC circuits to troubleshoot electrical circuits.

3. TEACHING AND EXAMINATION SCHEME

Tea	ching S	cheme	Total Credits	Examination Scheme						
((In Hou	rs)	(L+T+P)	Theory Marks		Theory Marks		Theory Marks Practical Marks		Total Marks
L	T	P	С	ESE	PA	ESE	PA	150		
03	02	02	7	70	30	20	30	130		

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

Note: It is the responsibility of the institute heads that marks for **PA** of theory & **ESE** and **PA** of practical for each student are entered online into the GTU Portal at the end of each semester within the dates specified by GTU.

4. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
Unit – I	1a.Explain generation of	1.1 Generation of alternating EMF.
AC	alternating EMF.	1.2 Cycle, Time period, Frequency,
Fundamentals	1b.Define various electrical	Amplitude, Phase and Phase difference,
	parameters	Average value, R.M.S. value, Form
	1c. Explain vector	factor, Peak Factor and Power Factor
	representation and	1.3 Vector representation of alternating
	mathematical operations	quantities
	1d.Calculate numerical	1.4 Addition, subtraction, multiplication
	based on AC quantity	and division of alternating vector
		quantities
		1.5 Simple numerical based on AC
Unit – II	20 Explain habavious of AC	fundamentals
AC Series	2a. Explain behaviour of AC voltage, current and	2.1 AC through pure: Resistance, Inductance, Capacitance
	power through pure	mudetance, Capacitance
circuits	resistance, pure	
	inductance and pure	
	capacitance.	
	2b.Explain behaviour of AC	2.2 AC through RL, RC, LC, RLC
	voltage, current and	series circuit
	power through RL, RC	
	and RLC series circuit.	
	2c. Explain resonance in	2.3 Resonance in RLC series circuits
	RLC series circuit.	
	2d. Solve numerical based	2.4 Numerical based on AC series circuits
	on AC series circuit.	and series resonance.
Unit – III	3a. Explain behaviour of AC	3.1 Solution of AC RL, RC, LC and RLC
AC Parallel	voltage, current and	parallel circuits using phasor method.
circuits	power through RL, RC and RLC parallel circuit.	3.2 Solution of AC RL, RC, LC and RLC parallel circuits using admittance
	and REC paramer eneutt.	method.
		3.3 Combination of AC series and parallel
	3b. Explain resonance in	circuit
	RLC parallel circuit.	3.4 Resonance in parallel AC circuits
	3c. Solve numerical based	_
	on AC parallel circuit	3.5 Numerical based on AC parallel circuits
		and parallel resonance.
Unit – IV	4a. Explain generation of	4.1 Generation of three phase alternating
Poly phase	three phase alternating	voltage.
circuits	voltage.	4.2. Advantages and disadvantages of Poly
	4b.Compare single phase and polyphase circuits.	4.2 Advantages and disadvantages of Poly phase circuits.
	4c. Explain three phase star	4.3 3 phase star connection
	and delta connection	4.4 3 phase delta connection
	4d. Explain concepts of line	4.5 Derive relationship between line
	voltage, phase voltage,	voltage and phase voltage, line current
	line current and phase	and phase current in 3 phase star and
	currents in 3 phase AC	delta connection.
	star and delta connected	4.6 Derive the equations of power in
	circuits.	3 phase star and delta connection.
	4e. Explain 6-phase AC	4.7 Explain basic concepts of 6-phase
	circuit.	circuits.

Unit	Major Learning Outcomes	Topics and Sub-topics
	4f. Solve numerical for poly phase circuit	4.8 Numerical for poly phase circuit
Unit – V Power in AC Circuits	5a.Explain concepts of active, reactive and apparent power as well as power factor with examples 5b. State the effects of power factor	5.1 Computation of active, reactive and apparent power using power triangle. 5.2 Illustration of lagging, leading and unity power factor 5.3 Illustration of effects of poor power factor.

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title		Distribution of Theory Marks			
		Teaching	R	U	A	Total
		Hours	Level	Level	Level	Marks
I	AC Fundamentals	10	06	06	04	16
II	AC Series circuits	10	06	06	06	18
III	AC Parallel circuits	08	04	05	05	14
IV	Poly phase circuits	08	05	05	04	14
V	Power in AC Circuits	06	04	02	02	08
Tot	al	42	25 24 21 70			70

Legends: R = Remember; U = Explain; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as only general guideline for students and teachers. The actual distribution of marks in the question paper may vary from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills so that students are able to acquire the competency. Following is the list of experiments for guidance.

S. No.	Unit No.	Practical/Exercise	
			Required
1	I	Use CRO to measure peak value, RMS value and frequency of	
		alternating quantity.	
2	II	Measure active power through resistor	2
3	II	Measure of inductance and resistance of choke coil	2
4	II	Measure voltage, current, power and power factor for RL series	2
		circuit to draw relevant phasor diagram.	
5	II	Measure voltage, current, power and power factor for RC series	2
		circuit to draw relevant phasor diagram.	
6	II	Measure voltage, current, power and power factor for RLC series	2
		circuit to draw relevant phasor diagram.	
7	III	Measure voltage, current, power and power factor for RL parallel	2
		circuit to draw relevant phasor diagram.	
8	III	Measure voltage, current, power and power factor for RC parallel	2
		circuit to draw relevant phasor diagram.	
9	III	Measure voltage, current, power and power factor for RLC	2

S. No.	Unit No.	Practical/Exercise	
		parallel circuit to draw relevant phasor diagram.	
10	III	Measure voltage, current, power and power factor for combined series-parallel circuits	4
11	III	Identify of electrical components (R, L, C) using high frequency generator.	2
12	IV	Test voltage and current relation for 3 phase star and delta connections.	2
13	V	Measure active and reactive power of poly phase circuits.	2
14	III	Measure resonance frequency and resonant impedance in RLC series circuit.	2
		Total	30

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- i. Preparing journals based on experiments performed in laboratory
- ii. Assignments for solving numerical

8. SUGGESTED LEARNING RESOURCES

(A) List of Books:

S. No.	Title of Books	Author	Publication
1	Electrical Technology Vol-1	Theraja, B. L.	S. Chand, New Delhi, 2011
2	Principles of Electrical Engineering	Gupta, B. R.	S. K. Kataria & Sons, New Delhi, 2011
3	Basic Electrical Engineering	Rao, Uma. K.	Pearson Education, New Delhi, 2011
4	Basic Electrical Engineering	Murthy, R. S.	Pearson Education, New Delhi, 2011
5	A Course in Electrical Technology Vol. I	Gupta, J. B.	S. K. Kataria & Sons, New Delhi, 2011
6	Fundamentals of Electrical Engineering	Singh, Tarlok	S. K. Kataria & Sons, New Delhi, 2011
7	Basic Electrical and Electronics Engineering	Singh, Ravish. R.	Tata Mc Graw Hill Education Pvt.Ltd., New Delhi, 2011.

B. List of Major Equipment/Materials with Broad Specifications

i. Ammeter: 0A-1A/0A-5A/0A-10A

ii. Voltmeter: 0V-50V/0V-150V/0V-300V/0V-500V

iii. Wattmeter: 0-1000W(5A/10A,300V/600V)

iv. Multimeter: $5^{1/2}$ digits resolutions with all basics measurement facility like DC Voltage: 200 mV ~ 1000 V, DC Current: 200 μ A ~ 10 A, AC Voltage: True-RMS,

- 200 mV ~ 750 V, AC Current: True-RMS, 20 mA ~ 10 A, 2-Wire, 4-Wire
- *Resistance:* $200 \Omega \sim 100 M\Omega$, *Capacitance Measurement:* $2 nF \sim 10000 \mu F$,

Frequency Measurement: 20 Hz ~ 1 MHz etc., 0.015% DC Voltage Accuracy.

- v. CRO: 30 MHz Bandwidth, 2 channel, 20 ns sampling time
- vi. Function generator: 10 HZ to 10MHZ, 10 Vpp, rise & fall time = 20ns, manual / external triggering
- vii. RF ammeter:
- viii. Choke coil: 0-80 mH, variable choke coil
- ix. Single phase variac: 0-300V/1KVA

C List of Software/Learning Websites

- i. Electronic Work bench or Circuit maker
- ii. www. kpsec.freeuk.com
- iii. www.howstuffworks.com/

9. INSTRUCTION STRATEGY:

- i. Numerical based on AC series circuits and series resonance
- ii. Use Power point presentation
- iii. Use Over-head projector
- iv. Use case study
- v. Field visit

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Shri R.L. Patel, Sr. Lecturer, Electrical engineering Department, Govt. Polytechnic, Jamnagar
- Shri M. J. Aghara, Sr. Lecturer, Electrical engineering Department, Govt. Polytechnic, Rajkot
- Shri A.A. Amin, Sr. Lecturer, Electrical engineering Department, Govt. Polytechnic, Vadnagar
- Ms V.R. Kotdawala, Sr. Lecturer, Electrical Engineering Department, Govt. Polytechnic, Himmatnagar.

Coordinator and Faculty Members from NITTTR Bhopal